Netizen-Style Commenting on Fashion Photos: Dataset and Diversity Measures

نویسندگان

  • Wen Hua Lin
  • Kuan-Ting Chen
  • HungYueh Chiang
  • Winston Hsu
چکیده

Recently, deep neural network models have achieved promising results in image captioning task. Yet, “vanilla” sentences, only describing shallow appearances (e.g., types, colors), generated by current works are not satisfied netizen style resulting in lacking engagements, contexts, and user intentions. To tackle this problem, we propose Netizen Style Commenting (NSC), to automatically generate characteristic comments to a user-contributed fashion photo. We are devoted to modulating the comments in a vivid “netizen” style which reflects the culture in a designated social community and hopes to facilitate more engagement with users. In this work, we design a novel framework that consists of three major components: (1) We construct a large-scale clothing dataset named NetiLook, which contains 300K posts (photos) with 5M comments to discover netizen-style comments. (2) We propose three unique measures to estimate the diversity of comments. (3) We bring diversity by marrying topic models with neural networks to make up the insufficiency of conventional image captioning works. Experimenting over Flickr30k and our NetiLook datasets, we demonstrate our proposed approaches benefit fashion photo commenting and improve image captioning tasks both in accuracy and diversity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

StreetStyle: Exploring world-wide clothing styles from millions of photos

Each day billions of photographs are uploaded to photo-sharing services and social media platforms. These images are packed with information about how people live around the world. In this paper we exploit this rich trove of data to understand fashion and style trends worldwide. We present a framework for visual discovery at scale, analyzing clothing and fashion across millions of images of peo...

متن کامل

Clothing Style Recognition using Fashion Attribute Detection

In this paper, a new framework is proposed for clothing style recognition in natural scenes. Clothing region is first detected through the fusion of super-pixel segmentation, saliency detection and Gaussian Mixture Model (GMM). Next, a group of fashion attribute detectors are trained to get the likelihood of each attribute in the clothing image. Finally, the correlation matrix between clothing ...

متن کامل

Towards Measuring Fine-Grained Diversity Using Social Media Photographs

Diversity is an important socio-economic construct that influences multiple aspects of human lives from the prosperity of a city to corporate earnings and from criminal justice to health and social engagement. Large, heavily populated urban areas can be highly diverse at the city or even neighborhood level, but we know very little about how much people from diverse demographics (such as age and...

متن کامل

Classifier Ensemble Framework: a Diversity Based Approach

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...

متن کامل

DSLR-Quality Photos on Mobile Devices with Deep Convolutional Networks –Supplemental material–

Despite a rapid rise in the quality of built-in smartphone cameras, their physical limitations — small sensor size, compact lenses and the lack of specific hardware, — impede them to achieve the quality results of DSLR cameras. In this work we present an end-to-end deep learning approach that bridges this gap by translating ordinary photos into DSLR-quality images. We propose learning the trans...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.10300  شماره 

صفحات  -

تاریخ انتشار 2018